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The problem of sample background correction in differential scanning calorimetric curves is 
addressed in this paper. An equation is derived for the heat capacity of the system, which 
corresponds to the sample background. Thereby, it is assumed that during the thermal event the 
system is a two-component mixture of the initial substance and the final product. According to 
this model, the variation in heat capacity of the system is due both to the increase in the partial 
concentration of the product at the expense of the initial substance and to the physical change in 
the specific heats of the two components, resulting from the temperature increase. The final result 
of the derivation is an integral equation which can be solved by means of a numerical technique. 
The algorithm used is presented in detail. The model is general, and can be applied to diverse 
exothermic or endothermic processes. The melting of a semi-crystalline polymer and the cure 
process ofa thermoset are given as demonstrative examples. The method improves the reliability 
and the reproducibility of the data. 

With the advent of on-line data processing with microcomputers, differential 
scanning calorimetry (DSC) is becoming increasingly popular in both scientific and 
industrial routine applications. The main areas of interests are the cure kinetics of 
thermosets and the melting (crystallization) of thermoplastics. Without computers, 
a kinetic analysis with chart operation for a thermoset cure, for example, is very 
time-consuming. A microcomputer working on-line with a differential scanning 
calorimeter requires less than a minute to do a more extensive analysis. The high 
speed of data processing allows the workers in this field to apply sophisticated 
numerical techniques to improve the quality of results. This paper reports a 
numerical computation technique which can be applied to separate the DSC data 
from the sample background in a systematic manner. The theory presented here is 
general, and can be applied to many exothermic or endothermic transitions studied 
by means of DSC. 
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The problem of sample background correction in DSC 

The problem of sample background correction arises from the fact that the 
specific heat of the system continuously changes during the thermal event (e.g. 
curing, melting, etc.) from the level of the initial substance(s) to that of the final 
product. To obtain the net effect due to the thermal event, the course of the heat 
capacity change, which we call the sample background, should be subtracted from 
the data corrected for the instrumental baseline. (Correction of data for the 
instrumental baseline is usually done by subtracting the blank curve from the direct 
data.) Though the sample background correction is a severe problem which affects 
the quality and the reproducibility of the data, very little attention is paid in the 
literature to the solution of the problem. In the prevailing standard methods to be 
found in the literature, the initial and the final levels of the specific heats are merely 
connected by straight lines or sigmoidal curves without any rationale. In the case of 
a thermoset cure, the DSC curve obtained by repeating the heating cycle on the 
cured sample is also taken as the sample background. Straight lines or sigmoidal 
curves may not necessarily represent the real sample background, because the 
specific heat of the system during the thermal transition depends on both the 
current degree of conversion and the temperature. At the same time, the repeat cycle 
used in the thermoset cure represents the real sample background only at the 
extreme end of the cure process. It poorly represents the sample background at the 
starting side of the cure process, which is also the most decisive part of the 
thermogram in the kinetic analysis. 

Theoretical considerations 

In this section, we shall develop a simple theory with the aim of calculating the 
heat capacity of the system, which is variable during the thermal event. To do this, 
we make the following assumption: during the thermal event the system is a two- 
component mixture of the initial substance(s) and the final product, and the overall 
heat capacity of the system is determined additively by the instantaneous partial 
composition of the individual components. It is emphasized here that we recognize 
not only the gradual change in partial composition of the individual components 
during the event, i.e. from zero to unity for the product, but also the physical 
changes in specific heat of the two components due to the temperature increase. 
This is extremely important, because the thermal events for polymers take place in a 
temperature range which is wide enough to bring about physical specific heat 
changes. In the case of thermoplastic melting, the two components are the solid 
polymer and the polymer melt. In the case ofa  thermoset cure, they are the uncured 
resin system and the final cured material. 
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The validity of our assumption is unquestionable for the usual thermoplastic 
melting (or crystallization) processes, because it is improbable that there is a third 
intermediate phase involved in the transition, whose specific heat is completely 
different from the other two. As for the thermoset cure, however, we must impose 
some restrictions, because the degree of crosslinking of the "product" increases 
gradually until the final degree of crosslinking is attained. This is equivalent to 
saying that there are an infinite number of intermediates with different chemical 
structures involved in the cure process. For this reason a single product cannot be 
defined and the assumption appears to lose its validity for the case of a thermoset 
cure. We discuss this problem in Section 3 with some details. For the present, let us 
continue with the theory for the case where the chemical structures of the two 
individual components in the transient mixture do not change, and there is no third 
phase involved in the event. 

It follows from the above assumption that the sample background, F(t), which is 
directly proportional to the heat capacity of the transient mixture with the 
proportionality constant being the heating rate, can be written as 

F(t) = ~t{e2(t ) -  ex(t)} + el(t) (1) 

where t = the time coordinate, which is proportional to temperature for constant 
heating rates; ct = the partial concentration of the product, which is by definition 
equal to the current degree of conversion; P2(t) = the DSC signal for the product 
alone, which can be estimated through linear extrapolation of the portion of the 
total curve after the thermal event (for a thermoset cure this is approximately equal 
to the signal for a repeat cycle); Pl(t) = the DSC signal for the initial substance(s) 
in the absence of the event, which can be estimated through linear extrapolation of 
the portion of the total curve prior to the thermal event; and F(t) is the sample 
background which is to be calculated. The linear extrapolations applied to estimate 
PI and P2 are justified for the reason that the specific heats of most inorganic and 
organic materials vary linearly with the temperature. Exceptions are temperature 
ranges in which third-order type transitions, such as the glass transition, are 
involved. It is very seldom the case that the glass transition of polymers takes place 
just prior to the melting of thermoplastics. 

The current degree of conversion, ct, is given by definition as 

t 

j" {G(t) - F(t)} dt 
= 0 

,. (2) 
j" {a(t) - r(t)} dt 
O 

where G(t) = the total signal corrected for the instrumental background; and 
t, = the time of termination of the thermal event. Figure 1 shows G(t), Pl(t), and 

J. Thermal Anal. 31, 1986 



1066 BANDARA: A SYSTEMATIC SOLUTION 

P2(t) for a typical situation which arises in the case of thermoplastic melting, while 
Fig. 2 explains the meaning of Eq. 1 graphically. Substitution of Eq. 2 into Eq. 1 
yields 

t 

! {G(t)-  F(t)} dt 
F(t) =, t, {P2(t)- Pl(t)} + Pl(t) (3) 

t {G(t)-F(t)} dt 

& 
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Fig. 1 Typical shapes of the functions G(t), PI(t), P2(t) and F(t) for the melting of low-density 
poly(ethylene). F(t) was calculated via Eq. 3 
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Fig. 2 Diagram showing the relation between Pl(t), P2(t) and e at a specific time t' 

It should be noted that Eq. 3 accounts for the heat capacity variation of the system 
due to both the conversion and the temperature (or time) increase. The equation 
also satisfies the following two boundary conditions; at zero conversion, i.e. ~t = 0, 
the sample background tends to take the form ofPl(t);  and at complete conversion, 
i.e. ct = 1, it tends to take the form of P2(t). We must now solve this equation for F(t) 
so as to obtain the sample background which we are looking for. An analytical 
solution would be difficult, even if simple analytical expressions are available for the 
functions involved. However, we could develop an iterative algorithm on a personal 
computer to find a numerical solution for F(t). The algorithm can be outlined as 
follows: at first, P~(t) itself is treated as an approximate solution to F(t), and the 
right-hand side of Eq. 3 is evaluated with this to find F(t). The outcoming solution 
for F(t) is a better approximation than the initial input. In the next iteration the new 
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value of F(t) becomes the input. In this way four iterations are done. In practice, 
four iterations are sufficient to get a fair solution which does not change in further 
iterations. In the Appendix some programming hints are given in detail. The 
technique can be applied in different situations involving polymers. 

Demonstrative examples 

Thermoplastic melting 

As a typical example for non-isothermal thermoplastic melting, a low-density 
poly(ethylene) sample was taken. This polymer has markedly different specific heats 
in the melt and the solid phase. Figure 1 shows the calculated sample background, 
together with the functions involved in Eq. 3. P~(t) is the linear extrapolation of 
G(t) prior to the melting process, while P2(t) is that of the melt. In Fig. 3, the 
calculated F(t) is plotted as a function of ~t for this case. By interchanging Pl(t) and 
P2(t), we could have applied the same computation of F(t) for non-isothermal 
crystallization of the polymer. 
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Fig. 3 Diagram showing the relation between the calculated sample background, which is directly 
proportional to the heat capacity of the system, and the degree of conversion. The data 
correspond to those in Fig. I 

Thermoset cure 

Figure 4 shows the sample background correction for a commercially available 
epoxy-phenolic resin. Pl(t) is taken as the linear extrapolation of G(t) prior to the 
cure process, while Pz(t) is the repeat cycle. As in the case of thermoplastic melting 
demonstrated above, the calculated sample background satisfies the boundary 
conditions at zero and complete conversion. It goes over smoothly from Pl(t) to 
P2(t). However, as pointed out earlier, the assumption of an additive relation for 
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Fig. 4 Typical shapes of the functions G(t), Pl(t), P2(t) and F(t) for the cure of epoxy resin. P2(t) was 
obtained from a repeat cycle after the cure. F(t) was calculated via Eq. 3 

the heat capacity (Eq. 1) is not strictly valid in this case. This is because we cannot 
define a single product, for the reason that the degree of crosslinking is continuously 
changing until the final cured material is obtained, i.e. there is an infinite number 
of intermediates. In other words, we are making an error by taking the repeat cycle 
as P2(t). To be strict, we must substitute P2(t) by the actual DSC signal for the cured 
fraction of  resin with the current crosslink density, say P'(t), which is in fact 
impossible to estimate. It is now argued that the impact of the error on the final 
result is not serious: the magnitude of the deviation of  P'2(t) from the repeat cycle, 
P2(t), is maximum at the beginning of the reaction (a = 0), and it is zero at the end 
(~= 1). However, Eq. 1 tells us that for small values of ~ the function F(t) is 
contributed to largely by Pl(t), no matter how large the values of  P2(t) may be. 
Therefore, any error in P2(t) in this range has a small impact on the final result of 
F(t). At the same time, the function F(t) is contributed to largely by P2(t) in the 
terminating range of  the cure process, i.e. for higher values of  ~. However, the 
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Fig, 5 Diagram showing the relation between a calculated sample background and the degree of 
conversion. The data correspond to those in Fig. 4 
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impact on F(t) is again small, because the deviation of P'2(t) from P2(t) itself is 
small. It follows that the error associated with F(t) is maximum in the 
neighbourhood of ~= 0.5. The worst case of this error can be estimated if we 
recognize that P'(t) should always lie between Pl(t), and therefore the deviation of 
P2(t) from P2(/) is always smaller than that of P~(t) from P2(t). For the example 
shown in Fig. 3, the latter mentioned deviation is about 0.16 mW. This value times 

(0.5) is equal to about 0.02% of the total DSC signal in this range. In Fig. 5, the 
calculated F(t) is plotted as a function of ~ for this case. 

Figure 6 shows DSC curves for the isothermal cure of an epoxy-phenolic resin. 
The sample background can be computed with similar arguments given above for 
the non-isothermal case. It may be noted that P~ (t) and P2(t) are parallel to the time 
coordinate in the isothermal part in Fig. 4. This is a consequence of our assumption 
that the specific heats of the two components in the mixture depend on the 
temperature. 
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Fig. 6 Typical shapes of the functions G(t), Pl(t), P2(t) and F(t) for a thermoset under isothermal cure. 
F(t) was calculated via Eq. 3 

Experimental 

The chemistry of the materials which served as examples in Section 3 has no 
relevance in the context of this work. They are merely typical classical examples, 
and are not described here. 

For the experiments reported here, a Perkin-Elmer DSC 4 apparatus was used, 
which was operated in conjunction with a Perkin-Elmer Thermal Analysis Data 
Station 3600. The data collected in the data station were transferred to an IBM 
personal computer via the auxiliary communication port of the data station 
(RS232). To acquire and process data, programs were written in IBM PC APL. The 
personal computer took 50 seconds to perform the numerical evaluation of the 
sample background when the number of data points in G(t) was 512 and the 
number of iterations was 4. 
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Concluding remarks 

Throughout the above discussion it was assumed that the total DSC curve has 
been corrected for the instrumental baseline. This is usually done by subtracting a 
blank curve from the direct DSC signal. According to Eq. 3, an instrumental 
baseline correction is not necessary if the baseline is parallel to the time axis within 
the range of the thermal event. 

Application of the reported method in the construction of the sample 
background leads to reproducible results, as we have experienced in the laboratory. 
The reproducibility of the measurements is much better than if the sample 
background is assumed to be a straight line or a sigmoidal curve. 

Figures 3 and 5 indicate that the heat capacity of the system is nearly directly 
proportional to the degree of conversion. This is evidence of the correctness of the 
solution we have found for Eq. 3. The small deviation from direct proportionality is 
due to the accompanying physical specific heat change due to the temperature 
increase, i.e. the variation of the slope (P2(t) - Pl(t)) and the intercept (Pl(t)) of the 
straight line in Fig. 2. The smooth transition of F(t) from P~(t) to P2(t) indicates 
that the calculated sample background is at least closer to reality than the straight 
line or sigmoidal type sample background curves which are constructed without 
any underlying law. 

Appendix 

To solve Eq. 3 in the text numerically, the following programming steps are 
recommended. 

1. Define the vectors, G(t), Pl(t) and P2(t), so that all have an equal number of 
elements. The corresponding time vector, t, contains the same number of elements, 
which are equidistant. P1 should contain the values given by'P~(t) = rnt + c, where m 
and c are the slope and intercept, respectively, of the linear part of G(t) prior to the 
thermal event. For thermal events such as thermoplastic melting, P2(t) is similar to 
P~(t), but contains values corresponding to the linear part of G(t) after the thermal 
event. For a thermoset cure, P2 should be the repeat cycle. 

2. Set F(t) equal to Pl(t) and evaluate the right-hand side of Eq. 3. To do this, 
each element of Pl(t) and P2(t) is considered. The corresponding current degree of 
conversion, ~, is determined by dividing the integral G(t ) -F( t ) ,  with the 
integration limits being given by the beginning of the event and t, which 
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corresponds to the current elements of P~(t) (or P2(t)), by the integral G(t)-F(t) 
for the whole range. 

3. Set the evaluated F(t) equal to the input F(t) and perform step 2 again. Repeat 
this procedure until F(t) does not change further when the output of the preceding 
iteration is put equal to the input of the next. 

Zusammenfassung - -  Diese Arbeit spricht das Problem der Probenuntergrundkorrektur an, das bei den 
Thermogrammen der Dynamischen Differenzkalorimetrie auftritt. Es wird eine Gleichung f'tir die 
W~rmekapazit/it der Probe bzw. den Probenuntergrund hergeleitet. Dabei wird angenommen, dab das 
System w/ihrend des thermischen Geschehens eine Zweikomponenten-Mischung darstellt. Laut diesem 
Modell findet eine Aenderung der W/irmekapazit/it deswegen statt, weil die partielle Konzentration der 
Probe auf Kosten des Ausgangsmaterials zunimmt, und weil die Temperaturerh6hung eine physikalische 

Aenderung der spezifisehen W~irme der zwei Komponenten herbeiffihrt. Das Resultat der Herleitung ist 
eine Integralgleichung, die mit Hilfe eines numerischen Verfahrens gel6st werden kann. Der dabei 
angewandte Algorithmus wird beschrieben. Das Modell ist allgemein giiltig und auf verschiedenartige 
thermische Prozesse anwendbar. Als Beispiele dienen das Schmelzen eines teilkristallinen Polymers und 
der Aushfirtungsvorgang eines Harzsystems. Das Verfahren verbessert die Reproduzierbarkeit und die 
VerlfiBlichkeit der Daten. 

PeamMe - -  B CTaTbe o6cy~rneHa npo6~eMa ropperLt14n qboaa 14po6bl aaa rp14BUX J2CK. Buae~e14o 
ypaBne1414e xenaoeMKOCT14 C14CTeMb~, ~OTOpOe COOTBeTCTByeT ~bOHy npo6~a. Flp14 aTOM npe~tnonara- 
YlOCb, tlTO SO BpeM~l TepM14qecl(oro CO6blT14~I C14CTeMa ~IB.rlSeTC~I ~IByXl(OMllO14e14T14Ofi, coc~Ogllle~ 143 

~cxo~14oro 14 Ko14eqnoro aetuecTB. Corylac14o 3TO~ Morea14 143Me14eH14e Te14JIOeMKOCT14 e14eTeMbl 
o6yc~oBheHo r a t  yBe~14qeH14eM rlaptt14a~bHO~ ronuenTpaun14 npo~yrTa 3a cqeT 14CXO~HOrO Bemecraa, 
Tar 14 ~143HtleCK14M 143MeHeH14eM, BcJIe,/lCTB1414 y~eom,~en14~ TeMnepaTypbi, y2!eJlbnOH TeIIJIOeMKOCTIt 
/IByX KOMIIOHeHTOB. Kol-leqHblM pe3y.rlbTaTOM Jlntl~pCHl114poBa1414g gB.rlble'rcg l, lHTerpa.rlbHOr ypaB- 
HeHHe, petuaeMoe t114C.qOBblM MeTO~OM. Ho~po6Ho on14ca14 HCnOYlb3yeMbIfi JI.JDI 3TOH lle.rI14 aJIrop14TM. 

FlpellCTaBale14Ha~ MO/lealb ~IBYDIeTC,q 06me~ 14 MO~eT 6blTb np14MeHeHa r pa33114qHblM 3K30- 14 
31411oTepM14qeCKHM npotteccaM. B KaqeeTBe np14Mepos npnBeReno naass~erine noa~yrp14cTamanqecroro 

noanMepa 14 npouecc OTBep)K~leH14a TepMortaacT14ra. MeTo~l yl~e.r114q14BaeT Ha~le~Hoc'rb 14 noc14po143BOo 
,/IHMOCTb 1400ay.~aeMbiX ~lanm,~x. 
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